Boundedness of solutions to a retarded Liénard equation

نویسندگان

  • Wei Long
  • Hong-Xia Zhang
چکیده

This paper is concerned with the following retarded Liénard equation x(t) + f1(x(t))(x (t)) + f2(x(t))x (t) + g1(x(t)) + g2(x(t− τ(t))) = e(t). We prove a new theorem which ensures that all solutions of the above Liénard equation satisfying given initial conditions are bounded. As one will see, our results improve some earlier results even in the case of f1(x) ≡ 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM

In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.  

متن کامل

Uniform Boundedness of Solutions for a Class of Liénard Equations

In this article, we study a class of Liénard equations x′′(t) + f(x(t))x′(t) + g1(x(t)) + g2(x(t− τ(t)) = e(t). Under some suitable conditions, we ensure that all solutions of the above Liénard equations are uniformly bounded. Our assumptions are less restrictive than those in [9]; thus we extend some previous results.

متن کامل

On the Qualitative Behaviors of Solutions to a Kind of Nonlinear Third Order Differential Equations with Retarded Argument

In this paper, with use of a Lyapunov functional, we discuss stability and boundedness of solutions to a kind of nonlinear third order differential equation with retarded argument: x′′′(t) + h(x(t), x′(t), x′′(t), x(t− r(t)), x′(t− r(t)), x′′(t− r(t)))x′′(t) +g(x(t− r(t)), x′(t− r(t))) + f(x(t− r(t))) = p(t, x(t), x′(t), x(t− r(t)), x′(t− r(t)), x′′(t)), when p(t, x(t), x′(t), x(t−r(t)), x′(t−r...

متن کامل

BEHAVIOR OF SOLUTIONS TO A FUZZY NONLINEAR DIFFERENCE EQUATION

In this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{Ax_n+x_{n-1}}{B+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $A, B$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.

متن کامل

Asymptotic Properties of Mild Solutions of Nonautonomous Evolution Equations with Applications to Retarded Differential Equations

We investigate asymptotic properties of mild solutions of the inhomoge-neous nonautonomous evolution equation d dt u(t) = (A+B(t))u(t)+f(t); t 2 R, where (A; D(A)) is a Hille-Yosida operator on a Banach space X, B(t), t 2 R, is a family of operators in L(D(A); X) satisfying certain boundedness and measurability conditions , and f 2 L 1 loc (R; X). The mild solutions of the corresponding homogen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010